Difference between revisions of "Chip Reverse Engineering"

From Tmplab
(Traduction en cours)
(Traduction)
Line 156: Line 156:
 
** Inconvénient: Faible resolution
 
** Inconvénient: Faible resolution
 
** Advantage: image carrée, adaptée au microscope.
 
** Advantage: image carrée, adaptée au microscope.
 +
 +
=== Résultats à ce jour ===
 +
 +
* Objectif: grossissement 500x ou mieux
 +
** on atteint jusqu'à 640x
 +
* Obj: camer 2 MP à 8 MP
 +
** La Canon IXUS fait 3.2 MP
 +
** Il faudra prendre plus de clichés : seul 2/3 de l'image sont utilisables
 +
* Obj: Table de manipulation pour bouger les puces avec précision:
 +
** Le montage du pauvre, avec des micro vis, à faire
 +
* Obj: Lumière réfléchie incidente
 +
** La lumière du jour fait une lumière incidente correcte à petit grossissement
 +
** Même avec les microscope fait pour l'observation par transparence
 +
** A faire: Acheter un éclairage adéquat. Tester avec des vrais éclairages (HB LEDs ?) dans les forts grossissements.
 +
 +
= Abrasion =
 +
* Quel type de colle pour fixer la puce sur un support solide et manipulable ?
 +
* Colle abrasive
 +
** [http://cgi.ebay.fr/pate-a-polir-DIALUX-tous-metaux-or-argent-au-choix_W0QQitemZ350076603183QQihZ022QQcategoryZ120132QQssPageNameZWDVWQQrdZ1QQcmdZViewItem such as Dialux]
 +
 +
= Logiciel =
 +
* http://hugin.sourceforge.net/
 +
 +
= Documentation =
 +
* [http://www.chillingeffects.org/reverse/faq.cgi#QID195 Le reverse engineering est-il légal ?]
 +
 
</div>
 
</div>

Revision as of 12:53, 24 February 2009

Microscope

Thanks to Karsten Nohl presentation at Hacker Space Fest, there's an interesting DIY approach for reverse engineering.

Now we have to find a microscope...

  • Friend of Phil will lend a microscope with camera
    • not perfect but should enable us to do the first etching/abrasive steps
  • We'll try to select and acquire a perfect microscope for this job.

Features

These are the features we're looking for:

  • 500x magnification
  • 2 MP to 8 MP camera
  • Objective table to move the chip slowly (i.e. not by hand, too much shaking and imprecision)
  • Reflected (incident) lighting

Feature we DON'T NEED:

  • Confocal microscope (it seems, because we'll abrase/grind away the upper layers anyway and the bottom layers are opaque anyway too)

Links

Perfect Microscope

Still selecting the right model.

Leads

Poor man microscope setup

  • Microscope: 640x optical Bresser Biolux
    • lent by Phil's friend
  • Objective table:
    • micro-screws controlled moving plate
    • possibility to buy one: [1]
  • Camera: 3.2 MP Canon Ixus V3
    • Mounting: Attached directly to the eye-piece
    • Drawback: produces round (not square) pictures (with no noticeable deformation) of smaller size/coverage than regular microscope-camera.
    • Advantage: working and free
  • Camera: 0.3 MP Ulead IC Chip camera
    • Drawback: Low res.
    • Advantage: square images, adapted for the scope.


Results so far

  • Req: 500x magnification or higher
    • This one goes up to 640x
  • Req: 2 MP to 8 MP camera
    • The Canon IXUS is 3.2 MP
    • Will need to take more photo as just 2/3rd of the picture is usable (round pictures)
  • Req: Objective table to move the chip slowly (i.e. not by hand, too much shaking and imprecision)
    • Poor man setup with micro-screws, TO DO
  • Req: Reflected (incident) lighting
    • Reflected light works at lower magnification with daylight
    • Even for microscope which is designed for see-through
    • TODO: Need to buy adequate lighting. Got to test with external lighting (HB LEDs?) at higher magnification (640x)

Abrasion

  • What kind of glue to use to attach the chip to solid/manoeuvrable support?
  • Abrasive paste

Software

Documentation

Microscope

La présentation de Karsten Nohl (en) au Hacker Space Fest ouvre la voie à des bricolages interessants de reverse engineering.

Maintenant il nous faut un microscope.

  • Un ami de Phil prêtera un microscope avec camera
    • Pas l'idéal mais devrait suffire pour les premières étapes d'abrasion et de grattage.
  • On va essayer de choisir et de se procurer le microscope idéal à cet emploi.

Fonctionnalités

Voila ce qu'on cherche:

  • grossissement 500x
  • camera de 2 à 8 megapixels
  • Table de manipulation qui puisse faire bouger lentement la puce (c'est à dire pas à la main, ça tremble et c'est trop imprécis)
  • Lumière réfléchie (incidente)

Ce dont on n'a PAS besoin :

  • Microscope confocal (en tous cas on dirait pas, puisque on va gratter et retirer les couches supérieures et que les couches inférieures sont opaques de toutes façons)


Liens

Le Microscope Parfait

On le cherche toujouts.

Pistes

Le microscope bricolé du pauvre

  • Microscope: 640x optical Bresser Biolux
    • prêté par un ami de Phil
  • Table de manipulation:
    • plaque controlée par micro-vis
    • possibilité d'en acheter une: [2]
  • Camera: 3.2 MP Canon Ixus V3
    • Mounture: Attachée directement sur l'occulaire
    • Inconvénients: retourne une image ronde (pas carrée, mais sans déformation notable). Image d'un angle plus petit que ce qui est possible via une camera microscopique.
    • Avantage: ça marche et c'est gratuit
  • Camera: 0.3 MP Ulead IC Chip camera
    • Inconvénient: Faible resolution
    • Advantage: image carrée, adaptée au microscope.

Résultats à ce jour

  • Objectif: grossissement 500x ou mieux
    • on atteint jusqu'à 640x
  • Obj: camer 2 MP à 8 MP
    • La Canon IXUS fait 3.2 MP
    • Il faudra prendre plus de clichés : seul 2/3 de l'image sont utilisables
  • Obj: Table de manipulation pour bouger les puces avec précision:
    • Le montage du pauvre, avec des micro vis, à faire
  • Obj: Lumière réfléchie incidente
    • La lumière du jour fait une lumière incidente correcte à petit grossissement
    • Même avec les microscope fait pour l'observation par transparence
    • A faire: Acheter un éclairage adéquat. Tester avec des vrais éclairages (HB LEDs ?) dans les forts grossissements.

Abrasion

  • Quel type de colle pour fixer la puce sur un support solide et manipulable ?
  • Colle abrasive

Logiciel

Documentation